Gaussian Upper Density Estimates for Spatially Homogeneous Spdes

نویسنده

  • LLUÍS QUER-SARDANYONS
چکیده

We consider a general class of SPDEs in R driven by a Gaussian spatially homogeneous noise which is white in time. We provide sufficient conditions on the coefficients and the spectral measure associated to the noise ensuring that the density of the corresponding mild solution admits an upper estimate of Gaussian type. The proof is based on the formula for the density arising from the integration-by-parts formula of the Malliavin calculus. Our result applies to the stochastic heat equation with any space dimension and the stochastic wave equation with d ∈ {1, 2, 3}. In these particular cases, the condition on the spectral measure turns out to be optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and smoothness of the density for spatially homogeneous SPDEs

In this paper, we extend Walsh’s stochastic integral with respect to a Gaussian noise, white in time and with some homogeneous spatial correlation, in order to be able to integrate some random measure-valued processes. This extension turns out to be equivalent to Dalang’s one. Then we study existence and regularity of the density of the probability law for the real-valued mild solution to a gen...

متن کامل

Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations

In this paper we establish lower and upper Gaussian bounds for the solutions to the heat and wave equations driven by an additive Gaussian noise, using the techniques of Malliavin calculus and recent density estimates obtained by Nourdin and Viens in [19]. In particular, we deal with the one-dimensional stochastic heat equation in [0, 1] driven by the space-time white noise, and the stochastic ...

متن کامل

Analysis of SPDEs Arising in Path Sampling Part II: The Nonlinear Case

In many applications it is important to be able to sample paths of SDEs conditional on observations of various kinds. This paper studies SPDEs which solve such sampling problems. The SPDE may be viewed as an infinite dimensional analogue of the Langevin SDE used in finite dimensional sampling. In this paper nonlinear SDEs, leading to nonlinear SPDEs for the sampling, are studied. In addition, a...

متن کامل

The Landau Equation for Maxwellian Molecules and the Brownian Motion on Son (r)

In this paper we prove that the spatially homogeneous Landau equation for Maxwellian molecules can be represented through the product of two elementary processes. The first one is the Brownian motion on the group of rotations. The second one is, conditionally on the first one, a Gaussian process. Using this representation, we establish sharp multi-scale upper and lower bounds for the transition...

متن کامل

Transition Density Estimates for Brownian Motion on Scale Irregular Sierpinski Gaskets

We construct Brownian motion on a class of fractals which are spatially homogeneous but which do not have any exact self-similarity. We obtain transition density estimates for this process which are up to constants best possible.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012